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Abstract

Occupational manganese (Mn) exposure has been associated with cognitive and olfactory 

dysfunction; however, few studies have incorporated cumulative biomarkers of Mn exposure such 

as bone Mn (BnMn). Our goal was to assess the cross-sectional association between BnMn, blood 

Mn (BMn), and fingernail Mn (FMn) with cognitive and olfactory function among Mn-exposed 

workers. A transportable in vivo neutron activation analysis (IVNAA) system was designed and 

utilized to assess BnMn among 60 Chinese workers. BMn and FMn were measured using 

inductively coupled plasma mass spectrometry. Cognitive and olfactory function was assessed 

using Animal and Fruit Naming tests, World Health Organization/University of California-Los 

Angeles Auditory Verbal Learning Test (AVLT) and the University of Pennsylvania Smell 

Identification Test (UPSIT). Additional data were obtained via questionnaire. Regression models 

adjusted for age, education, factory of employment, and smoking status (UPSIT only), were used 

to assess the relationship between Mn biomarkers and test scores. In adjusted models, increasing 

BnMn was significantly associated with decreased performance on average AVLT scores [β (95% 

confidence interval (CI)) = −0.65 (−1.21, −0.09)] and Animal Naming scores [β (95% CI) = −1.54 
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(−3.00, −0.07)]. Increasing FMn was significantly associated with reduced performance measured 

by the average AVLT [β (95% CI) = −0.35 (−0.70, −0.006)] and the difference in AVLT scores [β 
(95% CI) = −0.40 (−0.77, −0.03)]. BMn was not significantly associated with any test scores; no 

significant associations were observed with Fruit Naming or UPSIT tests. BnMn and FMn, but not 

BMn, are associated with cognitive function in Mn-exposed workers. None of the biomarkers were 

significantly associated with olfactory function.
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1. Introduction

Manganese (Mn) is an essential element that is used in the metabolism of lipids, proteins, 

and carbohydrates (Andreini et al., 2008); however, overexposure to the metal has been 

associated with neurotoxicity (Dobson et al., 2004). Workers involved in mining (Myers et 

al., 2003), welding (Bowler et al., 2006; Bowler et al., 2007), smelting (Cowan et al., 2009a, 

2009b), ore-processing (Chia et al., 1993), ferroalloy steel production (Lucchini et al., 

1999), dry-cell battery manufacturing (Bader et al., 1999), and pesticide manufacturing 

(Ferraz et al., 1988) may be at increased risk due to their chronic exposure to elevated Mn.

Occupational studies have identified associations of Mn exposure with cognitive deficits. In 

a cross-sectional study of 141 Mn oxide and salt producing plant workers, those exposed to 

Mn had decreased audio-verbal short-term memory (Roels et al., 1987). Decreased general 

intelligence has also been seen in chronically exposed Mn workers (Hua and Huang, 1991). 

In a group of 76 former and current chemical industry welders, welders had worse verbal 

learning, working memory, cognitive flexibility, and visuomotor processing speed when 

compared to non-exposed controls (Bowler et al., 2003). Welders who have developed 

parkinsonism due to Mn have experienced progressive cognitive slowing and forgetfulness 

(Sadek et al., 2003) as well as decreased information processing speed and cognitive 

flexibility (Bowler et al., 2006). Welders, and other Mn-exposed workers, have also 

experienced decreases in executive function, sustaining concentration, cognitive flexibility, 

and working memory (Bowler et al., 2007; Bowler and Lezak, 2015).

Mn overexposure may also result in decreased olfactory function. Mn-exposed Bay Bridge 

welders had significantly lower olfactory test scores than non-exposed controls (Antunes et 

al., 2007). When reassessed after 3.5 years following cessation of Mn exposure cessation, a 

group of 43 confined space welders still had depressed olfactory test scores (Bowler et al., 

2011).

Biomarkers such as blood (Roels et al., 1987; Chia et al., 1993; Myers et al., 2003; Bowler 

et al., 2007), urine (Roels et al., 1992; Lucchini et al., 1995; Cowan et al., 2009a), and 

toenail (Laohaudomchok et al., 2011; Hassani et al., 2016) have previously been used to 

assess the relationship between neuropsychological deficits and occupational Mn exposure. 

However, the utility of these biomarkers has been questioned due to issues such as the short 

half-life (t1/2) of manganese in these biomarkers, particularly blood, as a result of the body’s 
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homeostatic control of Mn (Aschner and Aschner, 2005; Menezes-Filho et al., 2009; Zheng 

et al., 2011; Costa and Aschner, 2015; O’Neal and Zheng, 2015), poor association with 

external air Mn concentrations (Smith et al., 2007; Laohaudomchok et al., 2011), and risk of 

external Mn contamination (Laohaudomchok et al., 2011; Reiss et al., 2016). Possibly due to 

these limitations, these biomarkers have been inconsistent in their results of identifying 

cognitive neuropsychological symptoms due to Mn.

Bone Mn (BnMn) has been suggested as a biomarker of cumulative Mn exposure as 40% of 

Mn in the body is stored in bone (Andersen et al., 1999; Arnold et al., 2002) and the t1/2 of 

Mn in human bone is estimated to be approximately 8-9 years (Arnold et al., 2002; O’Neal 

et al., 2014). Moreover, BnMn in rats has shown to be correlated with Mn levels in the 

striatum, hippocampus and cerebral spinal fluid, suggesting that BnMn may also reflect 

brain Mn concentrations (O’Neal et al., 2014).

Researchers from McMaster and Ryerson Universities have previously quantified BnMn 

among Mn-exposed workers using in vivo neutron activation analysis (IVNAA) (Arnold et 

al., 2002). In a feasibility study utilizing the IVNAA system, BnMn was assessed in a group 

of 29 welders and 10 controls: researchers from the McMaster and Ryerson groups found 

that BnMn among welders was significantly higher than among controls (Pejović-Milić et 

al., 2009). Despite the IVNAA system’s capability of successfully quantifying BnMn, its 

large size prohibits movement. Our research team has developed and validated a 

transportable neutron generator-based IVNAA system that can be used to assess Mn in the 

hand bones of participants (Liu et al., 2013, 2017); and recently reported BnMn 

concentrations in a pilot study of 19 volunteers (Wells et al., 2018) and cross-sectional 

occupational study of 60 Chinese workers (Liu et al., 2018).

The goal of this study was to present further analyses from our occupational study (Liu et 

al., 2018; Rolle-McFarland et al., 2018); specifically, to determine whether BnMn, as well as 

blood and fingernail manganese, are associated with neuropsychological tests of verbal 

fluency, verbal learning, and olfactory function. To the best of our knowledge, this analysis 

represents the first study to evaluate the association of BnMn with measures of cognitive and 

olfactory function.

2. Methods

2.1. Study Design and Population

This cross-sectional study recruited adult (≥18 years old) male workers from an equipment 

manufacturing and installation company (N=30) and a ferroalloy smelting facility (N=31) in 

Zunyi, China. Workers from the manufacturing facility did not work with Mn-related 

products in their current positions and performed assembling, managerial, and custodial 

jobs. Initially, the manufacturing facility workers were to act as a control group for the 

ferroalloy workers. However, upon further inspection of their work histories, some workers 

from the manufacturing facility had a history of previous Mn-related occupations. Therefore, 

to account for historical exposure, overall Mn exposure was evaluated on a continuous level 

among all participants. This allowed us to assess relationships between outcomes and Mn 

exposure as it increased from no/low levels to higher levels of exposure. One ferroalloy 
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worker did not complete a BnMn measurement and was excluded from all analyses, leaving 

a total of N=60.

Additional exclusion criteria included: 1) the self-reported presence of non-manganese 

related cognitive symptoms (i.e. from head trauma), active neurological or psychiatric 

disease, or movement impairments; and 2) participation in other studies involving the use of 

radiation within the past year. No participants were excluded from analyses for meeting 

these exclusion criteria. Five participants did not provide a sufficient quantity of fingernail 

tissue to conduct laboratory analyses and another two participants did not complete the 

olfactory test, thus these individuals were not included in analyses involving fingernail 

manganese and/or olfactory function, respectively.

The study was explained to the participants by local study staff prior to their signing an 

informed consent document. Both the Purdue Biomedical Institutional Review Board and 

the Zunyi Medical University (ZMU) Ethical Review Board approved this study. Participants 

visited the new ZMU campus where they completed a BnMn measurement, a short physical 

examination, blood and fingernail collection, and a short battery of neurological 

performance tests. Demographic information was self-reported using a questionnaire 

administered during the bone manganese assessment. Data collected included age, years of 

education completed, current drinking status and current smoking status.

2.2 Manganese Sample Collection and Analysis

A transportable in vivo Neutron Activation Analysis (IVNAA) system, previously described 

in detail (Liu et al., 2013, 2018), was used to determine participants’ BnMn. Briefly, a 

participant’s right hand and arm were washed with soap and water and then wiped with a 

50% alcohol solution. The participant’s right hand was irradiated for 10 minutes in order to 

excite 55Mn atoms in the hand bone to 56Mn. After a 5-minute break, the participant was 

seated and asked to place their hand in a high purity germanium (HPGe) detection system. 

The HPGe system collected characteristic Mn γ ray signals (847 keV) over the span of an 

hour. Mn γ ray counts were used to calculate BnMn concentrations based on a pre-existing 

calibration curve created from Mn-doped bone-equivalent hand phantoms. A Mn/Ca γ ray 

ratio was calculated to account for variation in counting geometry, neutron flux, as well as 

hand-palm beam attenuation. The detection limit (DL) for this method can reach 0.64 μg Mn 

per g bone for a 30 minute measurement with on HPGe detector (Liu et al., 2017). Nineteen 

participants (31.7%) had BnMn concentrations <DL for the transportable IVNAA and N=13 

(21.7%) of these measurements were negative. It is possible to obtain negative values when 

the true BnMn concentrations were close to zero; this is also seen in measurement of bone 

lead (Park et al., 2009). Prior work on bone lead measurements recommended retaining 

values <DL, including negative values, in analyses as this will decrease bias and increase 

analytical efficiency (Kim et al., 1995; Park et al., 2009). Therefore, all BnMn 

concentrations were retained for analyses.

Toenail Mn, which reflects approximately the past 7–12 months of exposure, has been 

previously used in several studies (Grashow et al., 2014; Hassani et al., 2016; 

Laohaudomchok et al., 2011). We learned that workers in our study population wore open-

toed shoes to work, which could result in substantial external contamination of toenails; 
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therefore, we collected fingernail samples instead of toenails. Methods to collect and analyze 

fingernails were adapted from Kile et al. (2007). Fingernails grow at about twice the rate of 

toenails; thus, it is estimated that they reflect the prior 3–6 months of exposures (Viana et al., 

2014; Yaemsiri et al., 2010). After washing with soap and water, nail samples were collected 

from participants’ 10 fingers using titanium dioxide nail clippers and stored in Ziploc bags at 

room temperature. Fingernail samples were cleaned using an ultrasonic water bath filled 

with a solution of 1% Triton X-100 (Sigma-Aldrich Inc., USA), rinsed with deionized water, 

and dried at 60 °C. This cleaning procedure was completed twice, prior to digestion in 

ultrapure nitric acid (Sigma-Aldrich Inc., USA) at 200 °C.

After digestion, samples were analyzed for Mn using inductively coupled plasma-mass 

spectrometry (ICP-MS) at Purdue University’s Campus-Wide Mass Spectrometry Center 

with a Thermo Fisher ELEMENT 2 (ThermoFinnigan/FinniganMAT, San Jose, CA, 

Bremen, Germany). Samples were run in multiple batches with results given in ppb. These 

values were converted to μg/g for analysis as this measure takes the fingernail mass into 

account. Detection limits (DLs) were calculated for values prior to transformation into μg/g 

and were calculated separately for each batch. This resulted in a range of DLs for fingernail 

Mn (1.31-3.97 ppb). For the purpose of this study, we considered any concentration below 

3.97 ppb to be below the DL. Normally, an imputation method such as ∕ 2
DL  would be used 

to impute values below the DL. However, because seventeen (28.3%) measurements were 

<DL, the imputation of values could introduce additional bias. The samples below the DL 

still had detectable concentrations which were larger than blank samples. Therefore we 

addressed these in a manner similar to BnMn and retained concentrations for samples <DL 

in statistical analyses. To ensure that these results were robust, we conducted analyses using 

FMn classified into tertiles as well as a continuous variable.

Trained study staff collected whole blood samples using standard collection protocols using 

trace-metal free vacutainers (Becton-Dickinson, USA). Samples were stored at −20°C prior 

to being shipped on dry ice to the Chinese Centers for Disease Control and Prevention in 

Beijing, China where they were analyzed for Mn using ICP-MS as described previously 

(Zhang et al., 2015). The DL for BMn was 0.11 μg/L; all 60 samples were above the 

detection limit.

2.3 Cognitive and Olfactory Assessments

A group of trained research assistants fluent in both Mandarin and English conducted 

individual neuropsychological assessments on participants. All assessments were previously 

validated and used in Chinese populations, described in more detail below. The test battery 

included 1) Animal Naming; 2) Fruit Naming; 3) World Health Organization/University of 

California Los Angeles Auditory Verbal Learning Test (AVLT); and 4) University of 

Pennsylvania Smell Identification Test – Traditional Chinese version (UPSIT-TC).

The Animal and Fruit Naming tests are designed to assess verbal fluency (Tombaugh et al., 

1999; Bowler and Lezack, 2015) and have been used in Chinese populations (Chiu et al., 

1997; Lee et al., 2002). For these tests, participants were asked to name as many animals or 
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fruits as possible in 1 minute. Scores were reported as the number of correct words stated by 

the participant in the time limit; a higher score indicated better verbal fluency.

The AVLT is a test of verbal learning and retention (Bowler et al., 2018; Maj et al., 1993), 

which has also been previously used among Chinese (Zhou and Jia, 2009). Participants were 

given 15 common words and asked to repeat the list of words during five acquisition 

(learning) trials. After the five acquisition trials, a new list of 15 words (an interference list) 

was given and participants were asked to repeat the new list of words back to the trained 

research assistant (trial 6). Finally, participants were asked to repeat as many words from the 

original acquisition list in a post-interference recall trial (trial 7). Several results from the 

AVLT were reported including the number of average correct words recalled across trials 1-5 

(average) and the score from trial five minus the score from trial one (difference); these 

scores indicate the number of words learned over the five trials. Scores from trial 6 and trial 

7, indicating new learning after distraction as well as longer-term retention, respectively, are 

also represented. For both trials 6 and 7 the number of correct words was reported as well as 

the number of intrusions (words that did not belong to the respective list) are reported. 

Higher AVLT average, difference, trial 6, or trial 7 scores indicate better verbal learning and 

retention; whereas, a lower intrusion score indicates better verbal learning and retention.

The UPSIT-TC test is an assessment of olfactory function intended for use in Chinese 

populations (Doty et al., 1984; Jiang et al., 2010; Jiang et al., 2014; Jiang and Liang, 2016). 

This is a multiple choice, scratch and sniff test consisting of four booklets each containing 

10 odors. Participants release each scent by scratching scent pads embedded on each page 

using the tip of a pencil. They indicate the correct odor by selecting one of the four choices. 

The UPSIT-TC score is calculated as the total number of correct odors selected. Thus, a 

higher UPSIT-TC score indicates better olfactory function.

2.4 Statistical Analyses

All statistical analyses were completed using Stata 13.1 (College Station, Texas). Ap-value 

≤0.05 was considered statistically significant. We recruited workers from two different 

factories with the expectation that workers in the ferroalloy factory would have higher 

exposures compared to those from the manufacturing factory, which was observed (Liu et 

al., 2018). However, current analyses are based on individual biomarker measurements 

rather than group exposure comparisons because individual biomarker concentrations reflect 

all potential exposure sources, not just those from the workplace. Additionally, several 

manufacturing workers reported previous employment at the ferroalloy factory; thus 

variations in cumulative exposure are not completely explained by current factory. All 

manganese biomarkers were lognormally distributed; therefore, median and interquartile 

ranges were used in descriptive statistics and natural log transformations were used on the 

biomarker variables prior to their inclusion in regression models. A constant of 5.99 was 

added to all BnMn concentrations so that all values were positive prior to the log 

transformation (Atkinson, 1994). Although the addition of a constant affects specific 

estimates of BnMn concentrations, it does not affect the results of statistics investigating the 

correlation or association of BnMn with other variables.
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We completed descriptive statistics, including univariate and bivariate comparisons of all 

exposure, outcome, and confounder variables. Results from bivariate comparisons of each 

variables compared to tertiles of BnMn are presented. Adjusted regression models were 

created to assess the association between Mn biomarkers with cognitive and olfactory test 

scores. Mn biomarkers were modeled as both a natural-log transformed continuous variable 

and tertiles. Covariate selection for adjusted models was based on Spearman correlations, 

model coefficients of determination, and previous literature (Bowler et al., 2007). Covariates 

included in the adjusted models were age (continuous), years of completed education 

(continuous), and current factory of employment (ferroalloy/manufacturing). Olfactory 

models were also adjusted for current smoking status (yes/no). Current factory of 

employment was retained as a covariate to account for any sampling differences between the 

manufacturing and ferroalloy facilities even though participants were assessed as a whole 

group.

Although we incorporated multiple cleaning steps in our protocol, it is possible for either our 

nail samples or BnMn measurements to be affected by external contamination from Mn-

containing dirt on the nails and/or hands. Therefore, a post-hoc sensitivity analysis was 

conducted to assess whether any bias may have been introduced by contamination of FMn or 

BnMn samples. FMn was established using a handheld K-X-ray Fluorescence device before 

and after the first ultrasonic water bath cleaning. The difference between pre- and post- 

cleaning FMn concentrations was calculated and used as an indicator of participants with 

potentially high external contamination on their fingernails or hands. A kernel density plot 

was created to visualize the distribution of these differences (Supplementary Figure 1). Most 

the samples (N=54; 88.5%) had differences of less than 7000 μg/g. Another distinct group of 

samples (N=7; 11.5%) had differences that were greater than 7000 μg/g, suggesting possible 

external contamination. Sensitivity analyses were conducted by rerunning multivariable 

linear regressions without these 7 samples (Supplementary Table 1 and Supplementary Table 

2).

3. Results

Population characteristics stratified by BnMn tertiles are reported in Table 1. For the entire 

population (N=60) mean (standard deviation (SD)) age and years of education were 47.4 

(7.9) and 10.0 (3.9) years, respectively. On average, participants had been in their current 

position for 9.0 years (SD=6.8). Current factory of employment was borderline significant 

(p=0.07) across BnMn tertiles; it was more likely that those in the highest tertile of BnMn 

exposure worked in the ferroalloy factory. More than half of the study population reported 

being current smokers (N=46; 76.7%).

Summary statistics for Mn biomarkers and outcome measures are reported in Table 2, again 

stratified by BnMn tertile. Both the average AVLT (p=0.02) and UPSIT-TC (p=0.05) tests 

had significant decreases in scores associated with increasing BnMn tertiles. Both FMn 

(p<0.01) and BnMn (p<0.01) were also significantly different across BnMn tertiles with 

increasing concentrations as BnMn tertiles increase.
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Adjusted regression models, assessing the relationship between the Mn biomarkers and test 

scores, are reported in Table 3 (continuous ln(Mn) variables) and Table 4 (tertiles of Mn). 

Increasing ln(BnMn) was significantly associated with decreased Animal Naming scores [β 
(95% CI) = −1.54 (−3.00, −0.07)] and decreased average AVLT scores [−0.65 (−1.21, 

−0.09)]. There was a decrease in average AVLT scores comparing those in the third tertile of 

BnMn to those in the lowest tertile [−1.18 (−2.31, −0.04)]. Those in the second BnMn tertile 

had lower scores for AVLT Trial 6 compared to those in the lowest BnMn tertile [−1.27 

(−2.44, −0.08)]. Trial 6 Intrusions increased for both the second [0.49 (0.04, 0.93)] and third 

[0.53 (0.07, 0.99)] tertile of BnMn when compared to the lowest tertile. Increasing ln(FMn) 

was also significantly associated with lower average AVLT [β (95% CI) = −0.35 (−0.70, 

−0.006)] and lower AVLT difference scores [−0.40 (−0.77, −0.03)]. BMn was not 

significantly associated with any of the cognitive or olfactory test scores.

Results from our sensitivity analysis where N=7 individuals with the strongest likelihood of 

FMn or BnMn contamination were removed from regression models is shown in the 

Supplementary Material (Supplementary Table 1 and Supplementary Table 2). Results were 

similar to analyses including the entire population, although fewer comparisons achieved 

statistical significance. There was still a significant association between increasing FMn and 

decreased average AVLT [β (95% CI) = −0.44 (−0.80, −0.07)]. The second tertile of BnMn 

was still associated with decreased AVLT Trial 6 scores [−1.25 (−2.46, −0.04)].

4. Discussion

The purpose of this study was to determine whether BnMn, as well as FMn and BMn, were 

associated with decreased cognitive and olfactory performance in a population of Chinese 

workers. Our results from adjusted regression models suggest that BnMn and FMn are 

associated with decreased performance on several measures of cognitive function, but not 

olfactory function. Additionally, we found no evidence of an association between BMn and 

cognitive or olfactory test scores. Similar trends occur when assessing the relationship 

between cognitive function and lead exposure; bone lead tends to be more consistently 

associated with cognitive decline than blood lead suggesting that cognitive decline may be 

associated with long-term exposure, but not necessarily recent exposure (Stewart et al., 

1999; Shih et al., 2006).

To the best of our knowledge, this is the first study that has assessed the relationship 

between BnMn, a biomarker of cumulative manganese exposure, with cognitive or olfactory 

tests in a human population. In a previous study assessing the kinetics of Mn in bone, BnMn 

in rats was associated with Mn concentrations in both the hippocampus and striatum, two 

parts of the brain that play an important role in cognition (O’Neal et al., 2014). In our study, 

BnMn was significantly associated with decreased scores for both AVLT and Animal 

Naming, two well-established tests of verbal memory and fluency function. Verbal memory 

tests like the AVLT have been associated with hippocampal impairment (Vyhnalek et al., 

2014) whereas verbal fluency tests, like the Animal Naming test, have been associated with 

decreased striatal matter (Ellfolk et al., 2014). Thus, it is plausible that our observed results 

of BnMn’s association with decreased verbal memory and fluency may be related to the 

accumulation of Mn in the striatum and hippocampus.
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FMn in our study was associated with decreased AVLT scores, suggesting an association 

between increasing Mn and lower verbal learning and retention. Associations between nail 

Mn and cognitive decline have been reported elsewhere. In a previous study, toenail Mn was 

associated with decline in several cognitive tests assessing domains such as visual and 

spatial working memory in a group of Mn-exposed welders and smelters (Hassani et al., 

2016). The association between Mn in nails and cognitive decline has also been seen in an 

environmental population. In a group of 89 environmentally exposed adults in Brazil, 

increasing FMn was significantly correlated with decreasing visual working memory (Viana 

et al., 2014). Mn in nails has been associated with Mn accumulation in striatum and 

midbrain of rat models (Sriram et al., 2012), suggesting that Mn in nail samples is also 

reflective of brain Mn concentrations.

Hair Mn (HMn) has been suggested as a similar biomarker to nail Mn (Laohaudomchok et 

al., 2011). In the previously mentioned environmental study of Mn-exposed adults in Brazil, 

both FMn and HMn were associated with decline in several cognitive domains including 

visual working memory, IQ levels, and cognitive flexibility (Viana et al., 2014). In an 

environmental study assessing Mn exposure in a group of Mexican adults, HMn was 

associated with decreasing olfactory function in the adults with the more exposed 

individuals having lower olfactory scores; however, these relationships were not significant 

(Guarneros et al., 2013). A similar trend was seen in our study where total FMn was 

associated with a non-significant decline in olfactory test scores. When compared to the 

lowest tertile of FMn, individuals in the middle tertile of FMn were associated with an 

increase in olfactory scores whereas individuals in the highest tertile of FMn were associated 

with a decrease in olfactory scores.

Although BMn in our study was associated with decline in some cognitive functions as well 

as the olfactory outcome, none of these relationships were significant. In a study of 

approximately 700 alloy plant workers, there were no significant associations between BMn 

and any of the cognitive assessments (Bast-Pettersen et al., 2004). Similar results were also 

observed in an environmentally-exposed population. In a study assessing Mn exposure in 

288 adults in Mexico, BMn was not significantly associated with any neuropsychological 

tests of cognitive function (Solís-Vivanco et al., 2009). Although not significant, one 

interesting result was that those in the highest tertile of BMn were associated with increasing 

UPSIT scores when compared to the lowest tertile. Similar results occurred in a study 

conducted by Antunes et al. (2007) in a group of bridge welders. Welders with the higher 

BMn levels had higher UPSIT scores than those with lower BMn levels.

However, our results for BMn are in contradiction with other previous research. In 

occupational studies, BMn has previously been associated with decreased visual and spatial 

working memory (Hassani et al., 2016); decreased IQ, verbal learning, and immediate 

memory in a group of Bay Bridge welders (Bowler et al., 2007), and lower memory scores 

among ferroalloy workers compared to controls (Lucchini et al., 1999). Additionally, a pilot 

study conducted on an environmentally-exposed population saw significant associations 

between cognitive performance and BMn concentrations greater than 15 μg/L (Santos-

Burgoa et al., 2001). The differences in results between studies could be due to the relatively 

short t1/2 of Mn in blood due to the homeostatic control of Mn by absorption and liver 
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excretion in the body (Aschner and Aschner, 2005; Menezes-Filho et al., 2009; Costa and 

Aschner, 2015). This natural process can lead to substantial sample variability (Baker et al., 

2014). Additionally, these cross-sectional studies assessed different populations, utilized 

several different cognitive tests, and incorporated different covariates in models; all of which 

can influence study results.

There are several limitations of this study. First, the cross-sectional design of the study limits 

our ability to establish temporality. However, cross-sectional studies can be valuable in 

generating hypotheses and data to be tested in future longitudinal studies. Additionally, our 

use of BnMn, a cumulative biomarker correlated with the prior 15-16 years of exposure 

(Rolle-McFarland et al., 2018), strengthens the hypothesis that long-term exposures likely 

play a major role in the association of Mn with cognitive function.

Another limitation of our study was the relatively small population size which could reduce 

study power. However, participants in this study had very high Mn exposure, which in turn 

would tend to increase study power. At the same time, including a population with high Mn 

exposure limits the extent to which our results can be extrapolated to those with lower, 

particularly environmental, Mn exposure. Future studies will need to be conducted to 

address whether these associations are also observed in populations with lower Mn 

exposure.

The small study sample also influenced our decision to retain BnMn and FMn values, below 

their respective DLs, for our statistical analyses. Keeping values below the DL allowed us to 

reduce potential bias from imputation of the data. Additionally, there is the possibility that 

Mn-containing dust on participants’ hands could have influenced the FMn and BnMn 

concentrations. However, we feel that this is unlikely due to the rigorous cleaning protocols 

we undertook in this study. Participants washed their hands before cutting fingernails, and 

cleaned them a second time prior to collection of BnMn data. Cut fingernails were also 

thoroughly cleaned, twice, prior to ICP-MS analysis. Overall, results from our sensitivity 

analysis, where the participants who were most at risk of having contaminated 

measurements were removed, were generally similar to our main results (Supplementary 

Table 1). Fewer of the comparisons in the sensitivity analysis were statistically significant; 

however this could be due to the smaller sample size. Though we cannot completely rule out 

the possibility of contamination of some samples, our sensitivity analysis suggests that this 

is not likely to invalidate our main results.

This study also has several strengths. Use of the IVNAA system to measure BnMn is a 

considerable strength of this study as this technology allowed our team to quantify 

cumulative manganese exposure in an occupational population. Advantages of this 

technology are that it summarizes exposures from multiple sources and does not rely on self-

reported data. Another strength of this study was that we utilized multiple measures of Mn 

exposure to allow direct comparison between our work and previous literature on cognitive 

and olfactory impacts of manganese exposure. In addition, we selected cognitive and 

olfactory tests that have been widely used in environmental epidemiology studies as well as 

validated for use in Chinese-speaking populations. Utilizing English and Mandarin bilingual 
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research assistants both fluent in English and Mandarin helped to further strengthen the 

study by reducing communication issues between study staff and participants.

5. Conclusions

Overall, our results suggest increased concentrations of BnMn and FMn, but not BMn, are 

associated with reduced performance on cognitive function tests. They also suggest that 

none of the biomarkers are associated with reduced performance on tests of olfactory 

function. Future work should assess the association between BnMn and motor function as 

Mn exposure has also been associated with decreases in motor function and the development 

of the motor disease manganism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Manganese (Mn) exposure has been related to impaired cognition and 

olfaction.

• Bone Mn, for cumulative exposure, was determined using Neutron Activation 

Analysis.

• After adjustment, bone and fingernail Mn were associated with impaired 

cognition.

• There were no significant associations between biomarkers and olfaction.

Rolle-McFarland et al. Page 16

Sci Total Environ. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rolle-McFarland et al. Page 17

Ta
b

le
 1

.

Po
pu

la
tio

n 
ch

ar
ac

te
ri

st
ic

s,
 s

tr
at

if
ie

d 
by

 b
on

e 
m

an
ga

ne
se

 te
rt

ile

V
ar

ia
bl

e
C

at
eg

or
y

To
ta

l
P

op
ul

at
io

n

B
on

e 
M

an
ga

ne
se

p-
va

lu
e

≤ 
0.

6 
μg

/g
0.

7 
to

 5
.1

μg
/g

≥ 
5.

2 
μg

/g

A
ge

, y
ea

rs
29

 to
 4

3
17

 (
28

.3
)

7 
(3

5.
0)

4 
(2

0.
0)

6 
(3

0.
0)

44
 to

 5
2

28
 (

46
.7

)
10

 (
50

.0
)

10
 (

50
.0

)
8 

(4
0.

0)
0.

43

>
 5

2
15

 (
25

.0
)

3 
(1

5.
0)

3 
(1

5.
0)

6 
(3

0.
0)

E
du

ca
tio

n,
 y

ea
rs

0 
to

 8
18

 (
30

.0
)

9 
(4

5.
0)

3 
(1

5.
0)

6 
(3

0.
0)

9 
to

 1
3

30
 (

50
.0

)
7 

(3
5.

0)
13

 (
65

.0
)

10
 (

50
.0

)
0.

41

>
 1

3
12

 (
20

.0
)

4 
(2

0.
)

4 
(2

0.
0)

4 
(2

0.
0)

Fa
ct

or
y

M
an

uf
ac

tu
ri

ng
30

 (
50

.0
)

13
 (

65
.0

)
11

 (
55

.0
)

6 
(3

0.
0)

0.
07

Fe
rr

oa
llo

y
30

 (
50

.0
)

7 
(3

5.
0)

9 
(4

5.
0)

14
 (

70
.0

)

C
ur

re
nt

 S
m

ok
er

N
o

14
 (

23
.3

)
5 

(2
5.

0)
5 

(2
5.

0)
4 

(2
0.

0)
0 

91

Y
es

46
 (

76
.7

)
15

 (
75

.0
)

15
 (

75
.0

)
16

 (
80

.0
)

V
al

ue
s 

ar
e 

N
 (

%
);

 N
=

60
; N

=
20

 in
 e

ac
h 

te
rt

ile
 o

f 
bo

ne
 m

an
ga

ne
se

. P
-v

al
ue

s 
ar

e 
ba

se
d 

on
 o

ne
w

ay
 A

N
O

V
A

 c
om

pa
ri

ng
 r

es
ul

ts
 b

y 
bo

ne
 m

an
ga

ne
se

 te
rt

ile
s.

Sci Total Environ. Author manuscript; available in PMC 2020 May 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rolle-McFarland et al. Page 18

Ta
b

le
 2

.

A
ve

ra
ge

 n
eu

ro
ps

yc
ho

lo
gi

ca
l t

es
t s

co
re

s 
an

d 
m

an
ga

ne
se

 b
io

m
ar

ke
r 

co
nc

en
tr

at
io

ns
, s

tr
at

if
ie

d 
by

 b
on

e 
m

an
ga

ne
se

 te
rt

ile

V
ar

ia
bl

e
N

To
ta

l
P

op
ul

at
io

n

B
on

e 
M

an
ga

ne
se

≤ 
0.

6 
μg

/g
0.

7 
to

5.
1μ

g/
g

≥ 
5.

2 
μg

/g
p-

va
lu

e

A
ni

m
al

 N
am

in
g 

a
60

15
.8

 (
5.

0)
16

.5
 (

5.
1)

16
.2

 (
4.

7)
14

.5
 (

5.
1)

0.
22

Fr
ui

t N
am

in
g 

a
60

11
.3

 (
3.

2)
11

.4
 (

3.
2)

11
.9

 (
3.

6)
10

.5
 (

2.
8)

0.
38

A
ve

ra
ge

 A
V

LT
 a

60
8.

5 
(2

.2
)

9.
1 

(2
.2

)
8.

9 
(1

.6
)

7.
5 

(2
.4

)
0.

02

A
V

LT
 a

60
4.

5 
(2

.0
)

4.
8 

(2
.0

)
4.

6 
(2

.1
)

4.
0 

(2
.0

)
0.

25

A
V

LT
 T

ri
al

 6
 a

60
4.

6 
(1

.9
)

5.
4 

(2
.2

)
4.

1 
(1

.4
)

4.
4 

(1
.9

)
0.

12

A
V

LT
 T

ri
al

 6
 I

nt
ru

si
on

s 
a

60
0.

5 
(0

.7
)

0.
2 

(0
.4

)
0.

6 
(0

.7
)

0.
6 

(0
.9

)
0.

13

A
V

LT
 T

ri
al

 7
 a

60
8.

8 
(3

.4
)

9.
5 

(3
.7

)
8.

7 
(2

.4
)

8.
1 

(3
.8

)
0.

18

A
V

LT
 T

ri
al

 7
 I

nt
ru

si
on

s 
a

60
0.

4 
(0

.7
)

0.
5 

(0
.8

)
0.

4 
(0

.6
)

0.
3 

(0
.8

)
0.

38

U
PS

IT
-T

C
 a

58
20

.2
 (

5.
8)

21
.7

 (
7.

1)
21

.0
 (

4.
7)

18
.0

 (
5.

2)
0.

05

B
lo

od
 M

an
ga

ne
se

, μ
g/

L
 b

60
14

.1
 (

4.
0)

13
.2

 (
2.

9)
14

.3
 (

4.
0)

14
.4

 (
6.

4)
0.

11

Fi
ng

er
na

il 
M

an
ga

ne
se

, μ
g/

g 
b

55
13

.5
 (

58
.5

)
3.

8 
(1

4.
4)

9.
2 

(3
2.

9)
71

.6
 (

31
9.

7)
<

0.
01

B
on

e 
M

an
ga

ne
se

, μ
g/

g 
b

60
2.

6 
(7

.2
)

−
0.

8 
(2

.6
)

2.
6 

(2
.5

)
18

.5
 (

21
.1

)
<

0.
01

a M
ea

n 
(s

ta
nd

ar
d 

de
vi

at
io

n)

b M
ed

ia
n 

(i
nt

er
qu

ar
til

e 
ra

ng
e)

A
V

LT
 =

 W
or

ld
 H

ea
lth

 O
rg

an
iz

at
io

n/
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

L
os

 A
ng

el
es

 A
ud

ito
ry

 V
er

ba
l L

ea
rn

in
g 

Te
st

; U
PS

IT
-T

C
 =

 U
ni

ve
rs

ity
 o

f 
Pe

nn
sy

lv
an

ia
 S

m
el

l I
de

nt
if

ic
at

io
n 

Te
st

 –
 T

ra
di

tio
na

l C
hi

ne
se

. T
he

 p
-

va
lu

e 
is

 b
as

ed
 o

n 
an

 u
na

dj
us

te
d 

lin
ea

r 
re

gr
es

si
on

 o
f 

th
e 

ne
ur

op
sy

ch
ol

og
ic

al
 te

st
 v

er
su

s 
bo

ne
 m

an
ga

ne
se

 te
rt

ile

Sci Total Environ. Author manuscript; available in PMC 2020 May 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rolle-McFarland et al. Page 19

Ta
b

le
 3

.

β 
(9

5%
 c

on
fi

de
nc

e 
in

te
rv

al
) 

fr
om

 a
dj

us
te

d 
lin

ea
r 

re
gr

es
si

on
 m

od
el

s 
co

m
pa

ri
ng

 c
on

tin
uo

us
, n

at
ur

al
-l

og
 tr

an
sf

or
m

ed
 m

an
ga

ne
se

 b
io

m
ar

ke
rs

 w
ith

 c
og

ni
tiv

e 

an
d 

ol
fa

ct
or

y 
te

st
 s

co
re

s

O
ut

co
m

e
B

lo
od

 M
an

ga
ne

se
F

in
ge

rn
ai

l M
an

ga
ne

se
B

on
e 

M
an

ga
ne

se

A
ni

m
al

 N
am

in
g 

a
0.

00
9 

(−
4.

68
, 4

.6
9)

−
0.

77
 (

−
1.

66
, 0

.1
1)

 d
−

1.
54

 (
−

3.
00

, −
0.

07
) 

c

Fr
ui

t N
am

in
g 

a
−

1.
06

 (
−

4.
42

, 2
.3

0)
−

0.
29

 (
−

0.
96

, 0
.3

8)
−

0.
40

 (
−

1.
49

, 0
.6

9)

A
ve

ra
ge

 A
V

LT
 a

−
1.

15
 (

−
2.

93
, 0

.6
2)

−
0.

35
 (

−
0.

70
, −

0.
00

6)
c

−
0.

65
 (

−
1.

21
, −

0.
09

)c

D
if

fe
re

nc
e 

A
V

LT
 a

−
0.

68
 (

−
2.

58
, 1

.2
2)

−
0.

40
 (

−
0.

77
, −

0.
03

) 
c

−
0.

33
 (

−
0.

94
, 0

.2
8)

A
V

LT
 T

ri
al

 6
 a

−
0.

02
 (

−
1.

95
, 0

.9
1)

−
0.

07
 (

−
0.

47
, 0

.3
3)

−
0.

19
 (

−
0.

82
, 0

.4
3)

A
V

LT
 T

ri
al

 6
 I

nt
ru

si
on

s 
a

0.
08

 (
−

0.
65

, 0
.8

2)
0.

07
 (

−
0.

08
, 0

.2
2)

0.
12

 (
−

0.
12

, 0
.3

5)

A
V

LT
 T

ri
al

 7
 a

−
0.

88
 (

−
4.

10
, 2

.3
4)

−
0.

39
 (

−
1.

03
, 0

.2
6)

−
0.

46
 (

−
1.

50
, 0

.5
8)

A
V

LT
 T

ri
al

 7
 I

nt
ru

si
on

s 
a

0.
09

 (
−

0.
65

, 0
.8

3)
−

0.
04

 (
−

0.
19

, 0
.1

2)
−

0.
19

 (
−

0.
42

, 0
.0

5)

U
PS

IT
-T

C
 b

−
1.

19
 (

−
6.

55
, 4

.1
8)

−
0.

48
 (

−
1.

47
, 0

.5
1)

−
1.

45
 (

−
3.

13
, 0

.2
2)

 d

a N
 =

 6
0,

 e
xc

ep
t f

or
 f

in
ge

rn
ai

l m
an

ga
ne

se
 m

od
el

s,
 w

he
re

 N
=

55
. M

od
el

s 
ad

ju
st

ed
 f

or
 a

ge
 (

co
nt

in
uo

us
),

 y
ea

rs
 o

f 
co

m
pl

et
ed

 e
du

ca
tio

n 
(c

on
tin

uo
us

),
 a

nd
 c

ur
re

nt
 f

ac
to

ry
 o

f 
em

pl
oy

m
en

t (
fe

rr
oa

llo
y/

m
an

uf
ac

tu
ri

ng
)

b N
 =

 5
8,

 e
xc

ep
t f

or
 f

in
ge

rn
ai

l m
an

ga
ne

se
 m

od
el

s,
 w

he
re

 N
=

53
. M

od
el

 a
dj

us
te

d 
fo

r 
ag

e 
(c

on
tin

uo
us

),
 y

ea
rs

 o
f 

co
m

pl
et

ed
 e

du
ca

tio
n 

(c
on

tin
uo

us
),

 a
nd

 c
ur

re
nt

 f
ac

to
ry

 o
f 

em
pl

oy
m

en
t (

fe
rr

oa
llo

y/
m

an
uf

ac
tu

ri
ng

) 
an

d 
cu

rr
en

t s
m

ok
in

g 
st

at
us

 (
ye

s/
no

)

c p 
va

lu
e 

≤ 
0.

05

d p 
va

lu
e 

>
0.

05
 b

ut
 ≤

 0
.1

A
V

LT
 =

 W
or

ld
 H

ea
lth

 O
rg

an
iz

at
io

n/
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

L
os

 A
ng

el
es

 A
ud

ito
ry

 V
er

ba
l L

ea
rn

in
g 

Te
st

; U
PS

IT
-T

C
 =

 U
ni

ve
rs

ity
 o

f 
Pe

nn
sy

lv
an

ia
 S

m
el

l I
de

nt
if

ic
at

io
n 

Te
st

 –
 T

ra
di

tio
na

l C
hi

ne
se

Sci Total Environ. Author manuscript; available in PMC 2020 May 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rolle-McFarland et al. Page 20

Ta
b

le
 4

.

β 
(9

5%
 c

on
fi

de
nc

e 
in

te
rv

al
) 

fr
om

 a
dj

us
te

d 
lin

ea
r 

re
gr

es
si

on
 m

od
el

s 
co

m
pa

ri
ng

 te
rt

ile
s 

of
 m

an
ga

ne
se

 b
io

m
ar

ke
rs

 w
ith

 c
og

ni
tiv

e 
an

d 
ol

fa
ct

or
y 

te
st

 s
co

re
s

B
lo

od
 M

an
ga

ne
se

F
in

ge
rn

ai
l M

an
ga

ne
se

B
on

e 
M

an
ga

ne
se

O
ut

co
m

e
Te

rt
ile

 2
,

12
.4

 t
o 

15
.3

 μ
g/

L
Te

rt
ile

 3
,

≥ 
15

.5
 μ

g/
L

Te
rt

ile
 2

,
2.

2 
to

 2
7.

7 
μg

/g
Te

rt
ile

 3
,

≥ 
32

.6
 μ

g/
g

Te
rt

ile
 2

,
0.

7 
to

 5
.1

 μ
g/

g
Te

rt
ile

 3
,

≥ 
5.

2 
μg

/g

A
ni

m
al

 N
am

in
ga

1.
21

 (
−

1.
80

, 4
.2

3)
−

1.
01

 (
−

4.
03

, 2
.0

2)
−

1.
94

 (
−

5.
74

, 1
.8

6)
−

3.
73

 (
−

8.
77

, 1
.3

2)
−

0.
89

 (
−

3.
79

, 2
.0

1)
−

2.
52

 (
−

5.
53

, 0
.5

0)
d

Fr
ui

t N
am

in
ga

1.
81

 (
−

0.
22

, 3
.8

5)
d

−
1.

41
 (

−
3.

46
, 0

.6
3)

−
2.

31
 (

−
5.

09
, 0

.4
8)

−
3.

33
 (

−
7.

03
, 0

.3
7)

d
0.

30
 (

−
1.

78
, 2

.3
9)

−
1.

40
 (

−
3.

57
, 0

.7
6)

A
ve

ra
ge

 A
V

LT
a

−
0.

12
 (

−
1.

27
, 1

.0
2)

−
1.

00
 (

−
2.

15
, 0

.1
5)

d
−

0.
57

 (
−

2.
06

, 0
.9

1)
−

1.
71

 (
−

3.
68

, 0
.2

7)
d

−
0.

11
 (

−
1.

20
, 0

.9
9)

−
1.

18
 (

−
2.

31
, −

0.
04

)c

D
if

fe
re

nc
e 

A
V

LT
a

−
0.

54
 (

−
1.

78
, 0

.7
0)

−
0.

53
 (

−
1.

77
, 0

.7
2)

0.
09

 (
−

1.
55

, 1
.7

3)
−

0.
39

 (
−

2.
57

, 1
.7

9)
−

0.
23

 (
−

1.
42

, 0
.9

7)
−

0.
80

 (
−

2.
04

, 0
.4

4)

A
V

LT
 T

ri
al

 6
 a

0.
49

 (
−

0.
74

, 1
.7

3)
−

0.
62

, −
1.

86
, 0

.6
2)

0.
98

 (
−

0.
70

, 2
.6

6)
0.

31
 (

−
1.

92
, 2

.5
4)

−
1.

27
 (

−
2.

44
, −

0.
08

)c
−

0.
65

 (
−

1.
88

, 0
.5

7)

A
V

LT
 T

ri
al

 6
 I

nt
ru

si
on

sa
−

0.
17

 (
−

0.
64

, 0
.3

1)
0.

11
 (

−
0.

37
, 0

.5
9)

0.
14

 (
−

0.
49

 0
.7

8)
0.

47
 (

−
0.

38
, 1

.3
1)

0.
49

 (
0.

04
, 0

.9
3)

0.
53

 (
0.

07
, 0

.9
9)

c

A
V

LT
 T

ri
al

 7
a

0.
29

 (
−

1.
81

 2
.3

9)
−

0.
88

 (
−

2.
98

, 1
.2

3)
−

1.
75

 (
−

4.
48

, 0
.9

7)
−

2.
53

 (
−

6.
14

, 1
.0

9)
−

0.
71

 (
−

2.
75

, 1
.3

3)
−

0.
94

 (
−

3.
05

, 1
.1

8)

A
V

LT
 T

ri
al

 7
 I

nt
ru

si
on

sa
−

0.
15

 (
−

0.
63

, 0
.3

3)
−

0.
09

 (
−

0.
57

, 0
.4

0)
0.

45
 (

−
0.

18
, 1

.0
8)

0.
06

 (
−

0.
78

, 0
.9

0)
−

0.
09

 (
−

0.
56

, 0
.3

8)
−

0.
12

 (
−

0.
61

, 0
.3

7)

U
PS

IT
-T

C
b

−
0.

30
 (

−
3.

81
, 3

.2
1)

0.
02

 (
−

34
1,

 3
.4

6)
1.

89
 (

−
2.

20
, 5

.9
8)

−
0.

82
 (

−
6.

33
, 4

.6
9)

−
1.

02
 (

−
4.

33
, 2

.2
8)

−
3.

11
 (

−
6.

55
, 0

.3
3)

d

a N
 =

 6
0,

 e
xc

ep
t f

or
 f

in
ge

rn
ai

l m
an

ga
ne

se
 m

od
el

s,
 w

he
re

 N
=

55
. M

od
el

s 
ad

ju
st

ed
 f

or
 a

ge
 (

co
nt

in
uo

us
),

 y
ea

rs
 o

f 
co

m
pl

et
ed

 e
du

ca
tio

n 
(c

on
tin

uo
us

),
 a

nd
 c

ur
re

nt
 f

ac
to

ry
 o

f 
em

pl
oy

m
en

t (
fe

rr
oa

llo
y/

m
an

uf
ac

tu
ri

ng
)

b N
 =

 5
8,

 e
xc

ep
t f

or
 f

in
ge

rn
ai

l m
an

ga
ne

se
 m

od
el

s,
 w

he
re

 N
=

53
. M

od
el

 a
dj

us
te

d 
fo

r 
ag

e 
(c

on
tin

uo
us

),
 y

ea
rs

 o
f 

co
m

pl
et

ed
 e

du
ca

tio
n 

(c
on

tin
uo

us
),

 a
nd

 c
ur

re
nt

 f
ac

to
ry

 o
f 

em
pl

oy
m

en
t (

fe
rr

oa
llo

y/
m

an
uf

ac
tu

ri
ng

) 
an

d 
cu

rr
en

t s
m

ok
in

g 
st

at
us

 (
ye

s/
no

)

c p 
va

lu
e 

≤ 
0.

05

d p 
va

lu
e 

>
0.

05
 b

ut
 ≤

0.
1

A
V

LT
 =

 W
or

ld
 H

ea
lth

 O
rg

an
iz

at
io

n/
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

L
os

 A
ng

el
es

 A
ud

ito
ry

 V
er

ba
l L

ea
rn

in
g 

Te
st

; U
PS

IT
-T

C
 =

 U
ni

ve
rs

ity
 o

f 
Pe

nn
sy

lv
an

ia
 S

m
el

l I
de

nt
if

ic
at

io
n 

Te
st

 –
 T

ra
di

tio
na

l C
hi

ne
se

. T
er

til
e 

1 
fo

r 
ea

ch
 b

io
m

ar
ke

r 
is

 th
e 

re
fe

re
nt

 g
ro

up
.

Sci Total Environ. Author manuscript; available in PMC 2020 May 20.


	Abstract
	Introduction
	Methods
	Study Design and Population
	Manganese Sample Collection and Analysis
	Cognitive and Olfactory Assessments
	Statistical Analyses

	Results
	Discussion
	Conclusions
	References
	Table 1.
	Table 2.
	Table 3.
	Table 4.

